Controlling tick borne diseases through domestic animal management: a theoretical approach

Ros Johnson

Dr Rachel Norman

Talk Outline

- Background of tick biology
- Management strategy
- Model Results
- Future plans

Louping III Virus (LIV)

- Tick borne disease
- Affects sheep and grouse

- Sheep vaccinated and 'dipped'
- 80% mortality in infected grouse

Tick Life Cycle

Tick Life Cycle

Control strategies

- No ticks = no disease
- Treat/remove wild animal hosts
 - Ethical/legality issues
- Treat domestic hosts
 - Sheep tick mops

Sheep 'tick mops'

 Actively use sheep treated with acaracide to 'mop up' ticks.

Sheep Model Results

Model run in Mathematica

What effect do sheep tick mops have with different deer densities?

 What effect does varying the efficacy have?

Model predictions with deer

Increased deer numbers reduces effect of sheep tick mops

Different efficacy levels

- High efficacy speeds recovery
- Low efficacy prevents recovery, worse than no sheep?

Conclusions

- Using sheep tick mops can be effective
 If:
 - very few deer
 - high level of efficacy

Empirical evidence

- Game and Wildlife Conservation Trust Key Findings:
 - The use of sheep as 'tick-mops' may reduce tick biting rates on grouse chicks where deer densities are lower than five per 100 hectares.
 - Red deer densities of 10 per 100 hectares appear to be too high for 'tick-mops' to be effective.

(Are sheep tick-mops effective in Scotland? http://www.gct.org.uk/text03.asp?PageId=339)

Future work

- Seasonality
- Deer tick mops
- Fieldwork/collaboration for validation data

Thanks to : R Norman, L Gilbert landowners/shepherds for data NERC Macaulay Development Fund

DEPARTMENT OF COMPUTING SCIENCE AND MATHEMATICS

The model

$$\frac{dG_s}{dt} = (a_g - s_g G)G - b_g G_s - (\beta_1 + P\beta_3)T_i G_s$$

$$\frac{dG_i}{dt} = (\beta_1 + P\beta_3)T_i G_s - \Gamma G_i \quad \text{where } \Gamma = \alpha + b_g + \gamma$$

$$\frac{dG_z}{dt} = \gamma G_i - b_g G_z$$

$$\frac{dT_s}{dt} = (a_t - s_t T)T(\beta_5 D + (1 - d)\beta_6 S) - \beta_2 T_s G_i - b_t T_s - \beta_3 T_s G - \beta_5 T_s D - \frac{\beta_6 T_s S - d\beta_7 T_s S}{\beta_6 T_s S - d\beta_7 T_s S}$$

$$\frac{dT_i}{dt} = \beta_2 T_s G_i - b_t T_i - \beta_3 T_i G - \beta_5 T_i D - \frac{\beta_6 T_s S - d\beta_7 T_s S}{Tick equations}$$